

areaDetector EPICSv4 modules
Bruno Martins

areaDetector EPICSv4 modules
Bruno Martins

Goal

Process the huge amount of data
generated by recent detectors in real

time

Motivation
● Eiger 1M: 1030x1065 @ 3 kHz
● Eiger 4M: 2070x2167 @ 750 Hz
● Eiger 9M: 3110x3269 @ 238 Hz
● Eiger 16M: 4150x4371 @ 133 Hz

● All of them saturate a 10Gbps link:
– That's a lot of data!

areaDetector v4 modules
● Comprised of:

– A plugin, NDPluginPva: v4 server

– A driver, pvaDriver: v4 client

● Developed in-house independently of other
solutions

● Merged into areaDetector's ADCore on
branch v4-plugin
– http://github.com/areaDetector/ADCore

http://github.com/areaDetector/ADCore

Plugin: NDPluginPva
● In processCallbacks:

– Receives an NDArray;

– Zero-copies it into an NTNDArray (creates a
shared_vector with underlying data pointing to
NDArray's pData);

– Publishes the NTNDArray as a PV using a
pvDatabase instance;

Driver: pvaDriver
● In monitorEvent:

– Receives an NTNDArray;

– Copies it into an NDArray;

– Publishes the NDArray to driver's listeners:
doCallbacksGenericPointer();

● No Zero Copy yet – see next slide.

Zero Copy
● NDArray → NTNDArray works fine

– Underlying shared_vector is smart: can be told to release() the
original NDArray in its destructor;

● NTNDArray → NDArray not so much
– NDArray can be allocated pointing to NTNDArray's
shared_vector's data, but smart pointer has to be kept for the
lifetime of the NDArray. However:

– No current way to make NDArray's release() dispose of the
smart pointer;

– Driver can keep the smart pointer, but for how long? How to know
NDArray that was passed to the plugins is no longer being used?

Test 1: Functionality
● Question: Do they work?
● Both IOC's on the same computer

simDetector

NDPluginPva

pvaDriver

NDPluginStdArrays

NDArray
pvAccess
NTNDArray

 NDArray

simDetectorIOCV4 pvaDriverIOC

NDPluginStdArrays

NDArray

Test 2: Performance
● Question: can they handle more than 10

Gbps?
● Both IOC's on the same computer
● simDetector:

– 5000x5000 @ 60 Hz: little over 11 Gbps

– ImageMode: Multiple, NumImages: 10000

● Both plugins with non-blocking callbacks.
● Results are the avearage of 10 runs.

simDetector
NDPlugin

Pva pvaDriver
NDPlugin
StdArrays

NDArray pvAccess
NTNDArray

NDArray

simDetectorIOCV4 pvaDriverIOC

Test 2: Performance – produced
frames

Frames Lost
(Avg)

Frames Through
(Avg)

Frames Through
(Avg %)

simDetector 0 10000 100

NDPluginPva 0 10000 100

pvaDriver 171.3 9828.7 98.287

NDPluginStdArra
ys

173.3 9826.7 98.267

Frames Through (%)
0

20

40

60

80

100

simDetector

NDPluginPva

pvaDriver

NDPluginStdArrays

Test 2: Performance – produced
frames

● NDPluginPva never lost frames.
– Zero Copy makes it really fast.

● It's worth noting that even without zero
copy pvaDriver lost only 2% of the frames.

Frames Through (%)
0

20

40

60

80

100

simDetector

NDPluginPva

pvaDriver

NDPluginStdArrays

Test 2: Performance – CPU usage /
thread

CPU Usage (%)
0

20

40

60

80

100

simDetectorIOC - driver

simDetectorIOC - plugin

pvaDriverIOC - driver

pvaDriverIOC - plugin

CPU Usage

simDetectorIOC - driver ~64%

simDetectorIOC - plugin ~51%

pvaDriverIOC - driver ~87%

pvaDriverIOC - plugin ~96%

Test 2: Performance - Computer
Specs
● Intel Xeon E5-2643, 24 cores @ 3.40 GHz
● 256GB RAM
● Debian Wheezy 7.8 64-bit

Test 3: Transfer between computers
● Question: can they saturate a real

10Gbps link?
● IOC's on different computers
● simDetector:

– 5000x5000 @ 50 Hz: ~10 Gbps

– ImageMode: Multiple, NumImages: 10000

● Both plugins with non-blocking callbacks.
● Results are the avearage of 5 runs.

simDetector
NDPlugin

Pva pvaDriver
NDPlugin
StdArrays

NDArray pvAccess
NTNDArray

NDArray

simDetectorIOCV4 pvaDriverIOC

Test 3: Transfer – produced frames

Frames Lost
(Avg)

Frames Through
(Avg)

Frames Through
(Avg %)

simDetector 0 10000 100

NDPluginPva 0 10000 100

pvaDriver 773.6 9226.4 92.264

NDPluginStdArra
ys

773.6 9226.4 92.264

Frames Through (%)
0

20

40

60

80

100

simDetector

NDPluginPva

pvaDriver

NDPluginStdArrays

Test 3: Transfer – CPU usage / thread

CPU Usage (%)
0

20

40

60

80

100

simDetectorIOC - driver

simDetectorIOC - plugin

pvaDriverIOC - driver

pvaDriverIOC - plugin

CPU Usage

simDetectorIOC - driver ~56%

simDetectorIOC - plugin ~53%

pvaDriverIOC - driver ~66%

pvaDriverIOC - plugin ~56%

Test 3: Transfer - bandwidth

NDPvaPlugin + pvaDriver: 9.3 Gbps Baseline (iperf network tool): 9.9 Gbps

Test 3: Transfer - Computer Specs
● simDetectorIOC:

– Intel Xeon E5-2643, 24 cores @ 3.40 GHz

– 256GB RAM

– Debian Wheezy 7.8 64-bit

● pvaDriverIOC
– Intel i7-4770, 8 cores @ 3.40 Ghz

– 16GB RAM

– Linux Mint 17.1 64-bit

Conclusion
● Plugin and server are ready to be used

– Available on areaDetector's v4-plugin branch

● They have a high throughput
● They don't saturate the CPU

– Although the CPU tested was powerful.

Future improvements
● Zero-copy on pvaDriver

– Might depend on NDArray changes

● Better mechanism to detect frame losses by pvaDriver
– 1 overrun might consist of more than 1 frame lost

● NDPluginPva/pvaDriver lossless mode:
– Client tells the server to slow down if needed

● How to handle multiple clients, then?

– Depends on support from v4 protocol

Thank you!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23

